Scalable Geometric Markov Chain Monte Carlo

نویسنده

  • Yichuan Zhang
چکیده

Markov chain Monte Carlo (MCMC) is one of the most popular statistical inference methods in machine learning. Recent work shows that a significant improvement of the statistical efficiency of MCMC on complex distributions can be achieved by exploiting geometric properties of the target distribution. This is known as geometric MCMC. However, many such methods, like Riemannian manifold Hamiltonian Monte Carlo (RMHMC), are computationally challenging to scale up to high dimensional distributions. The primary goal of this thesis is to develop novel geometric MCMC methods applicable to large-scale problems. To overcome the computational bottleneck of computing second order derivatives in geometric MCMC, I propose an adaptive MCMC algorithm using an efficient approximation based on Limited memory BFGS. I also propose a simplified variant of RMHMC that is able to work effectively on larger scale than the previous methods. Finally, I address an important limitation of geometric MCMC, namely that is only available for continuous distributions. I investigate a relaxation of discrete variables to continuous variables that allows us to apply the geometric methods. This is a new direction of MCMC research which is of potential interest to many applications. The effectiveness of the proposed methods is demonstrated on a wide range of popular models, including generalised linear models, conditional random fields (CRFs), hierarchical models and Boltzmann machines.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hamiltonian Monte Carlo Acceleration Using Neural Network Surrogate functions

Relatively high computational cost for Bayesian methods often limits their application for big data analysis. In recent years, there have been many attempts to improve computational efficiency of Bayesian inference. Here we propose an efficient and scalable computational technique for a state-of-the-art Markov Chain Monte Carlo (MCMC) methods, namely, Hamiltonian Monte Carlo (HMC). The key idea...

متن کامل

Information-Geometric Markov Chain Monte Carlo Methods Using Diffusions

Recent work incorporating geometric ideas in Markov chain Monte Carlo is reviewed in order to highlight these advances and their possible application in a range of domains beyond statistics. A full exposition of Markov chains and their use in Monte Carlo simulation for statistical inference and molecular dynamics is provided, with particular emphasis on methods based on Langevin diffusions. Aft...

متن کامل

Study of Preconditioners based on Markov Chain Monte Carlo Methods

Nowadays, analysis and design of novel scalable methods and algorithms for fundamental linear algebra problems such as solving Systems of Linear Algebraic Equations with focus on large scale systems is a subject of study. This research focuses on the study of novel mathematical methods and scalable algorithms for computationally intensive problems such as Monte Carlo and Hybrid Methods and Algo...

متن کامل

Geometric Ergodicity and Hybrid Markov

Various notions of geometric ergodicity for Markov chains on general state spaces exist. In this paper, we review certain relations and implications among them. We then apply these results to a collection of chains commonly used in Markov chain Monte Carlo simulation algorithms, the so-called hybrid chains. We prove that under certain conditions, a hybrid chain will \inherit" the geometric ergo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017